

Designing Particle Accelerators Using Derivative-free Optimization

Jeffrey Larson

Argonne National Laboratory

February 6, 2015

Classical Problem

- Classical Problem
- ▶ Derivatives are traditionally very important in optimization

- Classical Problem
- Derivatives are traditionally very important in optimization
 - How do you find minima/maxima in calculus?

- Classical Problem
- Derivatives are traditionally very important in optimization
 - How do you find minima/maxima in calculus?
 - What information is contained in the gradient?

► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.

- ► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.
- Derivatives are traditionally very important in optimization

- ► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.
- Derivatives are traditionally very important in optimization
 - How do you find minima/maxima in calculus?

- ► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.
- Derivatives are traditionally very important in optimization
 - How do you find minima/maxima in calculus?
 - What information is contained in the gradient?

- ► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.
- Derivatives are traditionally very important in optimization
 - How do you find minima/maxima in calculus?
 - What information is contained in the gradient?
- As computers become more powerful, more simulations appear

- ► These types of problems are called "black-box" optimization problems or derivative-free optimization problems.
- Derivatives are traditionally very important in optimization
 - ► How do you find minima/maxima in calculus?
 - What information is contained in the gradient?
- As computers become more powerful, more simulations appear
- Disclaimer: If the problem has derivatives please use them!

Derivative-free optimization problems show up throughout the world

- ► Engine design
- Physical experiments
- ► Tribology
- Satellite planning

- ▶ Problem setup
 - ▶ Receive a warning from an international monitoring agency

- ▶ Problem setup
 - ► Receive a warning from an international monitoring agency
 - ▶ The probability of collision is $10^{-1.61} \approx 0.02$.

- Problem setup
 - ► Receive a warning from an international monitoring agency
 - ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
 - Can control the duration and time of your rocket burn

- Problem setup
 - ▶ Receive a warning from an international monitoring agency
 - ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
 - Can control the duration and time of your rocket burn
 - Only burn in the direction of motion

- Problem setup
 - Receive a warning from an international monitoring agency
 - ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
 - Can control the duration and time of your rocket burn
 - Only burn in the direction of motion
 - You can run a simulation at any duration and time

- Problem setup
 - Receive a warning from an international monitoring agency
 - ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
 - Can control the duration and time of your rocket burn
 - Only burn in the direction of motion
 - You can run a simulation at any duration and time
 - ▶ Each simulation takes ≈ 20 seconds and we have 2.5 days

Problem setup

- Receive a warning from an international monitoring agency
- ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
- Can control the duration and time of your rocket burn
 - Only burn in the direction of motion
- You can run a simulation at any duration and time
- ▶ Each simulation takes ≈ 20 seconds and we have 2.5 days
- ▶ Want a probability of collision under 1 in a billion (10⁻⁹)

Problem setup

- Receive a warning from an international monitoring agency
- ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
- Can control the duration and time of your rocket burn
 - Only burn in the direction of motion
- You can run a simulation at any duration and time
- ▶ Each simulation takes ≈ 20 seconds and we have 2.5 days
- ▶ Want a probability of collision under 1 in a billion (10⁻⁹)
- Use the least amount of fuel as possible

Problem setup

- Receive a warning from an international monitoring agency
- ▶ The probability of collision is $10^{-1.61} \approx 0.02$.
- Can control the duration and time of your rocket burn
 - Only burn in the direction of motion
- You can run a simulation at any duration and time
- ▶ Each simulation takes ≈ 20 seconds and we have 2.5 days
- ▶ Want a probability of collision under 1 in a billion (10⁻⁹)
- Use the least amount of fuel as possible
- What would you do?

Try it yourself

MATLAB

Try it yourself

MATLAB

Process should hopefully be described to a computer.

Common first thoughts

- Random Guessing
 - Not very elegant
 - Evaluate points close to previous points
 - Needs some sort of finishing step

Common first thoughts

- Random Guessing
 - Not very elegant
 - Evaluate points close to previous points
 - Needs some sort of finishing step

- Finite-differences can be problematic
 - ▶ n+1 or 2n+1 evaluations at every point
 - Simulations are often noisy

[0:0.1:1] by [0:0.1:2.5] \approx 1.5 hours

[0:0.05:1] by [0:0.05:2.5] \approx 6 hours

[0:0.025:1] by [0:0.025:2.5] pprox 1 day

[0.15:0.005:0.2] by [0:0.005:0.1] \approx 1.3 hours

Coordinate Search

▶ Build a model of the entire space (Kriging)

- ▶ Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - ▶ Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search
 - Bacterial Colony Optimization

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization
 - ► Firefly Optimization

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization
 - Firefly Optimization
 - Harmony Search

- Build a model of the entire space (Kriging)
- Evolutionary algorithms
 - Simulated Annealing
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Particle Swarm
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization
 - Firefly Optimization
 - ► Harmony Search
 - River Formation Dynamics

$$\label{eq:linear_problem} \begin{split} & \underset{x \in \mathbb{R}^n}{\text{minimize }} f(x) \\ & \text{subject to: } x \in \mathcal{D} = \{x : -\infty < l \leq x \leq u < \infty\} \\ & \quad \nabla f(x) \ \ \text{is not available} \end{split}$$


```
\label{eq:linear_problem} \begin{split} & \underset{x \in \mathbb{R}^n}{\text{minimize }} f(x) \\ & \text{subject to: } x \in \mathcal{D} = \{x : -\infty < l \le x \le u < \infty\} \\ & \quad \nabla f(x) & \text{is not available} \\ & \quad Ax \le b \end{split}
```



```
minimize f(x)

subject to: x \in \mathcal{D} = \{x : -\infty < l \le x \le u < \infty\}

\nabla f(x) is not available

c(x) \le 0 \ (\nabla c(x) \text{ unavailable})
```


$$\label{eq:linear_problem} \begin{split} & \underset{x \in \mathbb{R}^n}{\text{minimize }} f(x) \\ & \text{subject to: } x \in \mathcal{D} = \{x : -\infty < l \leq x \leq u < \infty\} \\ & \quad \nabla f(x) \ \ \text{is not available} \end{split}$$

Stochastic

Problem Formulation

We want to identify distinct local minimizers of the problem

minimize
$$f(x)$$

 $1 \le x \le u$
 $x \in \mathbb{R}^n$

► The simulation *f* is already using parallel resources, but it does not scale to the entire machine.

We do not expect hundreds of meaningful local minima.

Motivation

A multistart method with some local optimization routine \mathcal{L} :

Algorithm 1: MLSL

for k = 1, 2, ... do

Evaluate f at N random points drawn uniformly from \mathcal{D} .

Start $\mathcal L$ at any previously evaluated point x:

- that is not a local minima
- ▶ $\nexists x_i : ||x x_i|| \le r_k$ and $f(x_i) < f(x)$

end

If the simulation f, and local optimization method \mathcal{L} , and r_k satisfy some assumptions, then MLSL has nice theoretical properties.

- **▶** *f*
- ► Twice continuously differentiable
- All local minima are interior points
- Some positive distance between all minima

If the simulation f, and local optimization method \mathcal{L} , and r_k satisfy some assumptions, then MLSL has nice theoretical properties.

- **>** 1
- Twice continuously differentiable
- All local minima are interior points
- Some positive distance between all minima
- $ightharpoonup \mathcal{L}$
- Strictly descent
- Converges to nearby minimum (not stationary point)

If the simulation f, and local optimization method \mathcal{L} , and r_k satisfy some assumptions, then MLSL has nice theoretical properties.

- **>** 1
- Twice continuously differentiable
- ► All local minima are interior points
- Some positive distance between all minima
- ▶ L
- Strictly descent
- Converges to nearby minimum (not stationary point)
- $ightharpoonup r_k$

$$r_{k} = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right) \frac{\sigma \log kN}{kN}}$$
 (1)

Theorem 8¹

If r_k is defined by (1) and $\sigma > 2$, then the probability that \mathcal{L} is started at iteration k tends to 0 with increasing k.

If $\sigma > 4$, then, even if the sampling continues forever, the total number of local searches ever started is finite with probability 1.

Theorem 12¹

If $r_k \to 0$, all local minima will be found.

¹A. H. G. Rinnooy Kan and G. T. Timmer. "Stochastic Global Optimization Methods Part II: Multi Level Methods." *Mathematical Programming*, 39(1):57–78, Sept. 1987.

▶ If we had the ability to concurrently evaluate points, what might be the best course?

▶ Is it better to do finite-difference computations or separate local optimization runs?

Measuring Performance

ORBIT started from points in a 10x10 grid

Measuring Performance

Algorithms compared

- Ours (4 parallel workers)
- Direct (serial)
- pVTDirect (4 parallel workers)

- Since Ours involves a random sampling stream, each problem was duplicated 10 times.
- ▶ Each method evaluates the centroid first.

How would you measure how "efficiently" an algorithm finds multiple local minima?

Define

Let \mathcal{X}^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in \mathcal{X}^*\}$. Let $x_{(i)}^*$ be the element of \mathcal{X}^* corresponding to the value $f_{(i)}^*$.

Define

Let \mathcal{X}^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^*\in\mathcal{X}^*\}$. Let $x_{(i)}^*$ be the element of \mathcal{X}^* corresponding to the value $f_{(i)}^*$.

How would you measure how "efficiently" an algorithm finds multiple local minima?

Define

Let \mathcal{X}^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in \mathcal{X}^*\}$. Let $x_{(i)}^*$ be the element of \mathcal{X}^* corresponding to the value $f_{(i)}^*$.

A method has found the global minimum within a level $\tau > 0$ at batch iteration k if it has found a point \hat{x} satisfying:

$$f(\hat{x}) - f_{(1)}^* \le (1 - \tau) \left(f(x_0) - f_{(1)}^* \right),$$

where x_0 is the starting point for the problem.

Define

Let \mathcal{X}^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in \mathcal{X}^*\}$. Let $x_{(i)}^*$ be the element of \mathcal{X}^* corresponding to the value $f_{(i)}^*$.

A method has found the j best local minima within a level $\tau > 0$ at batch iteration k if:

$$\left| \left\{ x_{(1)}^*, \dots, x_{(\bar{j})}^* \right\} \bigcap \left\{ x_{(i)}^* | \exists \hat{x} \text{ s.t. } \left\| \hat{x} - x_{(i)} \right\| \le \tau \right\} \right| \ge j$$

where \bar{j} is the largest integer such that $f_{(\bar{i})}^* = f_{(i)}^*$.

Measuring Performance: $\tau = 10^{-1}$

Measuring Performance: $\tau = 10^{-1}$

Measuring Performance: $\tau = 10^{-3}$

Measuring Performance: $\tau = 10^{-3}$

Conclusions and Future Work

Take Away:

- Derivative-free optimization is an active and applicable area of mathematics
- Local models efficiently use previous function evaluations
- Concurrent function evaluations can be used to help an algorithm find multiple local optima

Conclusions and Future Work

Take Away:

- Derivative-free optimization is an active and applicable area of mathematics
- ▶ Local models efficiently use previous function evaluations
- Concurrent function evaluations can be used to help an algorithm find multiple local optima

Working on:

- Industrial implementation of Our algorithm
- Accelerator design problems
- Developing rules for pausing local optimization runs

For students:

Computational math includes

- Applications
- Computer Programming
- Theory

For students:

Computational math includes

- Applications
- Computer Programming
- Theory

DFO is broad

- Geometry of evaluated points
- Analysis
- Stochastic/probabilistic functions
- Stochastic/probabilistic models
- Removing old points?

For students:

Computational math includes

- Applications
- Computer Programming
- Theory

DFO is broad

- Geometry of evaluated points
- Analysis
- Stochastic/probabilistic functions
- Stochastic/probabilistic models
- Removing old points?

Questions?

Other interests

Sport Scheduling (Elitserien)

Heavy-duty Vehicle Platooning

► Mathematics Outreach

